

Absorber R&D

Daniel M. Kaplan

Transforming Lives.Inventing the Future.www.iit.edu

NuFact '01 Workshop Tsukuba, Japan May 28, 2001

MuCool Absorber R&D Collaboration:

E. Almasri, E. L. Black, K. Cassel, R. Johnson, D. M. Kaplan, W. Luebke *Illinois Institute of Technology**

S. Ishimoto, K. Yoshimura KEK High Energy Accelerator Research Organization

M. A. Cummings, A. Dychkant, D. Hedin, D. Kubik *Northern Illinois University**

C. Darve†
Northwestern University*

Y. Kuno
Osaka University

D. Errede, M. Haney *University of Illinois at Urbana-Champaign**

M. Reep, D. Summers *University of Mississippi*

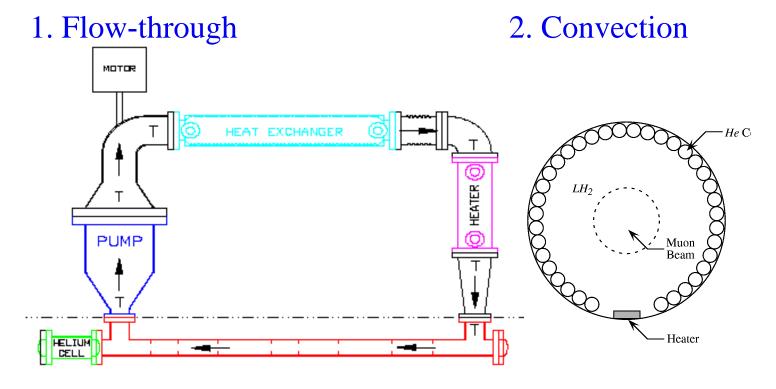
in collaboration with

S. Geer, C. Johnstone, M. Popovic, A. Tollestrup *Fermilab*

Main Issues

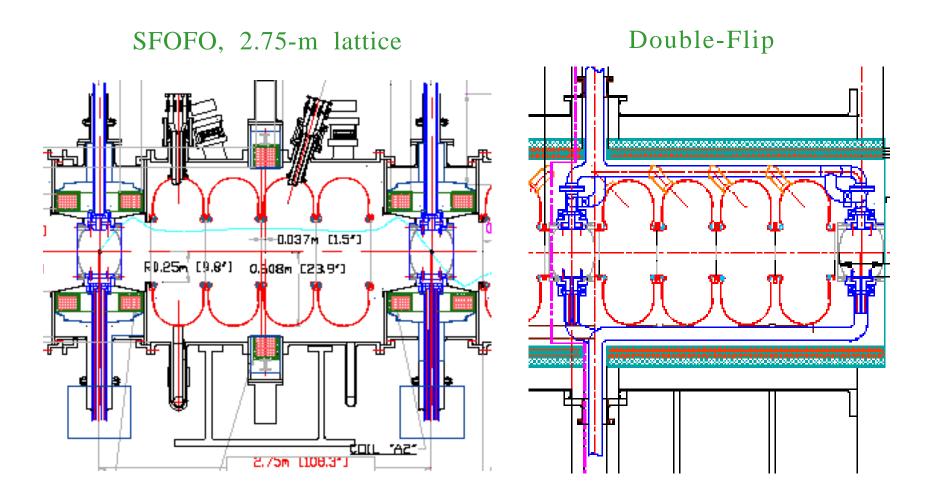
- Need to:
 - 1. Minimize scattering-induced beam heating
 - o Use LH₂
 - o Use as thin and low-Z windows as practical
 - 2. Remove large dE/dx heat flux
 - o Need to understand fluid flow and heat transfer
 - 3. Prototype and test to verify designs
 - o Complicated engineering issues require empirical tests
 - o Both bench and beam tests planned
- New idea: gaseous absorber
- How to build shaped absorbers?

Absorbers & Power Dissipation


• Baseline Feasibility Study II design has 3 types of absorbers:

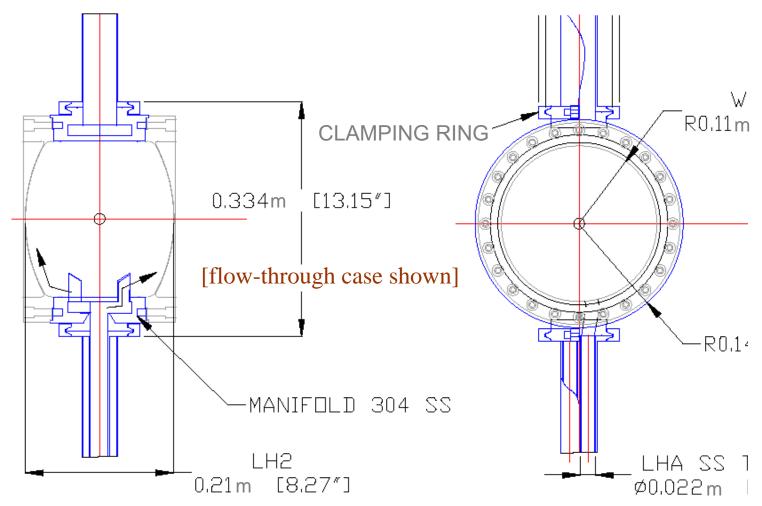
Absorber	Length (cm)	Radius (cm)	Window thickness (µm)	Number needed	Power diss. (W)
Minicool	175	30	≈300	2	≈ 5500
SFOFO 1	35	18	360	16	≈ 300
SFOFO 2	21	11	220	36	≈ 100

- SFOFO absorber ~ 100 W
 - \Rightarrow Lineal power density $\approx 5-10$ W/cm
 - → comparable to high-power LH₂ targets (cf. SLAC, Bates, JLab)
- But note: Palmer's \times 2 in efficiency, \times 4 in p beam power would require \times 8 in cryo & power handling


Heat Transfer

- Need to assure adequate heat transfer from core to periphery
 - ⇒ Avoid longitudinal flow
- <u>2 approaches:</u>

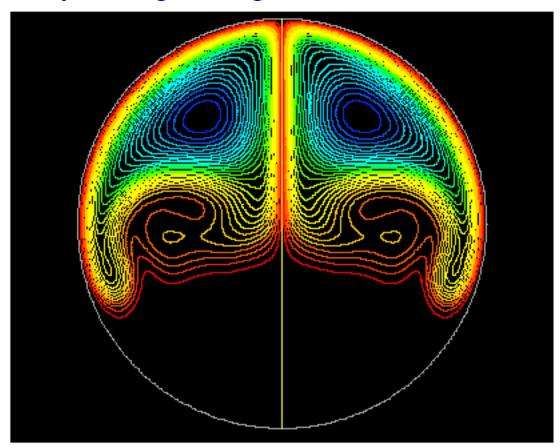
• Both appear feasible – further studies & tests in progress


Cooling-Channel Layouts

⇒ To maximize cooling rate & minimize solenoid cost, need absorber design that fits in cramped space

SFOFO 2 Absorber Assembly

(E. L. Black, IIT)

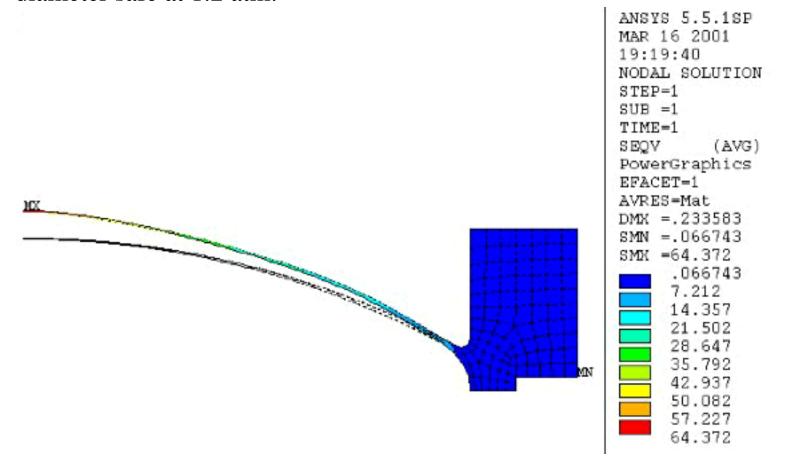


- Nozzles that determine flow pattern need to be designed and tested heuristically
- → Will bench-test this with room-temperature flow model

Convection Design

(E. Almasri, K. Cassel, IIT; S. Ishimoto, K. Yoshimura, KEK; Y. Mori, Osaka)

- Performance more amenable to calculation than for flow-through,
 - key question: convective heat transfer coefficient within LH₂
- 2D CFD calc by IIT engineering M.S. student (3D calc impractical):


- Refinement of CFD calcs ongoing
- KEK-Osaka group building prototype

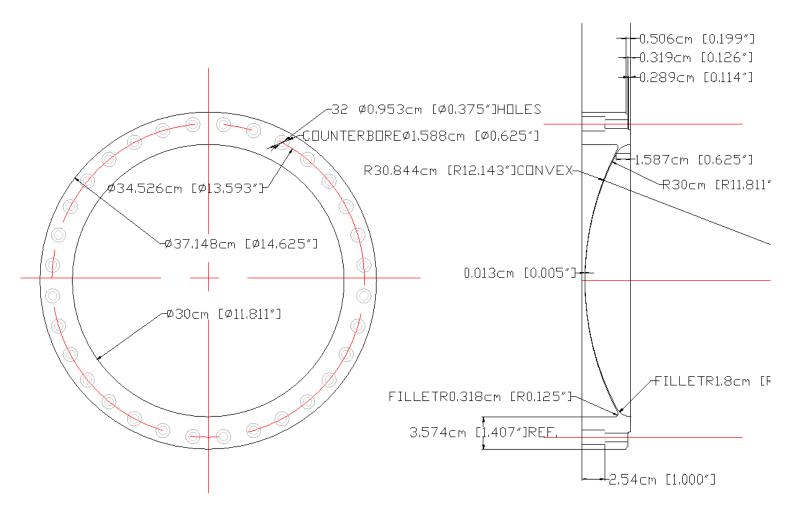
Minimizing Window Thickness

(E. L. Black, IIT; M. A. Cummings, NIU; C. Darve, NWU)

• ASME:
$$t \ge \frac{0.885PD}{SE - 0.1P} = \begin{cases} 530 \,\mu\text{m} \ (D = 36 \text{ cm}) \\ 330 \,\mu\text{m} \ (D = 22 \text{ cm}) \end{cases}$$
 (torispherical, 6061-T6, $P = 1.2 \text{ atm}$)

• ANSYS F.E.A. study (C. Darve, NWU) shows that *tapered* 6061-T6 Al torispherical window of 360-µm (220-µm) thickness and 36-cm (22-cm) diameter safe at 1.2 atm:

Thinner Windows?

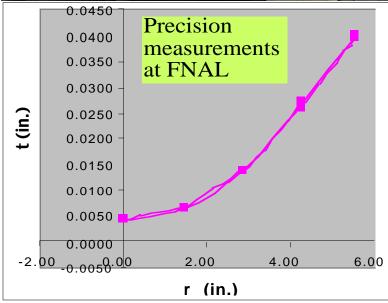

(D. Summers, U. Miss.)

Al alloy name	Composition	Density	Yield strength @300K	Tensile strength @300K	Tensile strength @20K	Rad. Length
	% by weight	(g/cc)	(ksi)	(ksi)	(ksi)	(cm)
6061-T6	1.0Mg 0.6Si 0.3Cu 0.2Cr	2.70	40	45	68	8.86
2090-T81	2.7Cu 2.2Li .12Zr	2.59	74	82	120	9.18

- "Aircraft alloy" 2090-T81 80% stronger than 6061-T6
 - \Rightarrow Thickness can be reduced by $\approx 45\%$
 - ⇒ 200 μm thickness at 18-cm radius 125 μm thickness at 11-cm radius at 1.2 atm

IF design scales ≈ linearly and **IF** such thin foils can be manufactured from this material (U. Miss. to test)

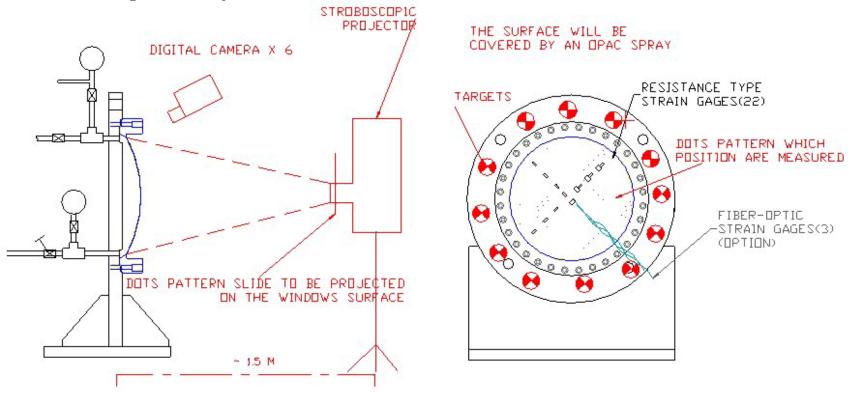
Prototype Window Design


TEST ABSORBER WINDOW PROFILE GEOMETRY

E.L.Block/IIT 8/2/2000 REV 5 8/5/2000 CURRENT DESIGN IN FABRICATION MATERIAL: 6061-T6

<u>Prototype Window – as built</u>

• Window machining at U. Miss.



• Setup for pressure test at NIU

Window Overpressure Test

- Pressurize window prototype with H₂O to certify F.E.A. calculation
- To take place later this month
- Monitoring techniques:
 - Strain gauges
 - High-speed photography
 - $-\Delta V$ (observe change in H_2O height in graduated cylinder)
 - Photogrammetry:

Linac-area Test Facility (LTF)

• View to southwest from Wilson Hall showing parts of Linac berm and gallery and parking lot

• Layout of new construction

LTF Program

Current status and plans:

- Construction in progress
- LH₂-absorber bench tests to start this summer
- Beamline installation over next year
- High-power absorber beam tests next year, beam tests of integrated cooling cell in a few years (once 201-MHz cavities & solenoid available), followed by "string test"
 - Note max power density 16 W/cm insufficient for "Palmer upgrade"
- High-power RF testbed (both 200 MHz and 805 MHz)

Options for the future:

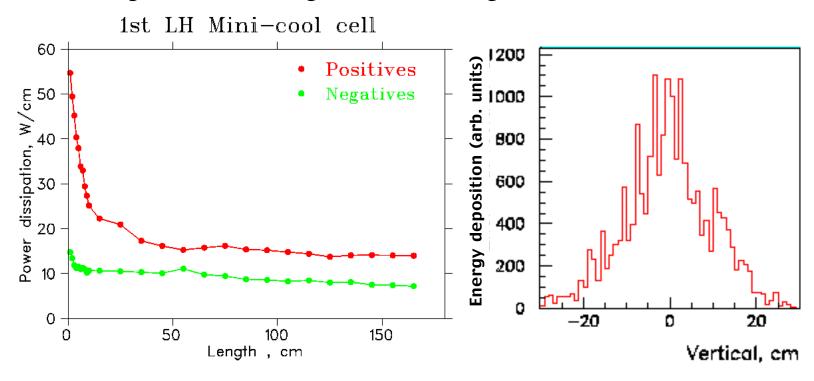
1. Superconducting RF test facility, *e.g.*:

200 MHz superconduting cavity (Cornell)

805 MHz cavity for Linac energy upgrade

2. Any H⁻ 400-MeV-beam-related experiment

Minicooling Absorbers


• FS II calls for 2 minicooling absorbers preceded by beryllium plate (to absorb low-*E* protons):

Absorber	Mat'l	Length (cm)	Radius (cm)	Power Diss. (kW)
"0"	Be	1?	30	?
1	LH ₂	175	30	≈5.5
2	LH ₂	175	30	~5

- FNAL 15' bubble chamber had 6.7-kW refrigerator
 - \Rightarrow 5.5-kW absorber feasible (known technology), not too expensive (~ \$10⁶ capital, ~ \$10⁵/y operating)
- Note that minicooling dominates cooling-channel cryo!
 - Minicooling: $\approx 11 \text{ kW}$
 - SFOFO 1: $\approx 4.8 \text{ kW}$
 - SFOFO 2: \approx 3.6 kW

Minicooling: Heat transfer

• Peak dissipation much higher than average (H. Kirk sims):

⇒ Need to assure adequate heat transfer from core to periphery

Haven't worked this out in detail. Note that power/cm at upstream end is $>10 \times$ that proposed for SLAC E158, but power/cm³ is $<10^{-2} \times$ E158

⇒ Looks feasible

Minicooling: Window thickness

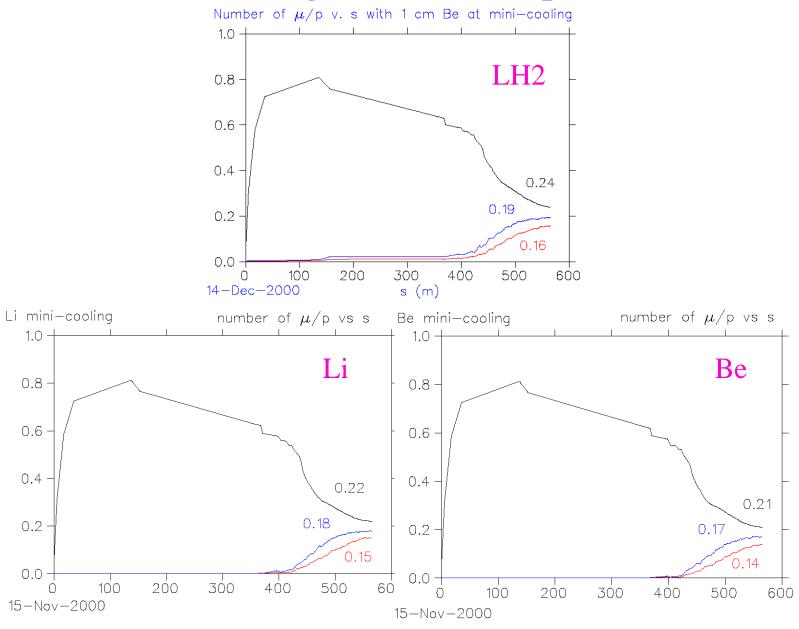
• Assuming operation at 1.2 atm, hemispherical Al-alloy windows, and "canonical" safety factor of 4,

$$t \approx 2 PR/S \approx 2 \times 0.12 \text{ MPa} \times 0.3 \text{ m} / 300 \text{ MPa} \approx 240 \text{ }\mu\text{m}$$

(Determination of exact thickness awaits detailed design and finiteelement analysis)

⇒ Negligible effect on beam given 175 cm of LH, per absorber

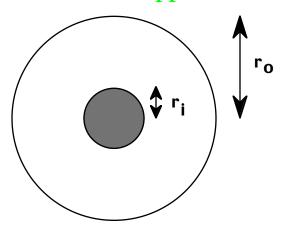
Minicooling: Simpler alternatives?


- Does it make sense to operate two "15' bubble chamber equivalents" for this purpose?
 - While LH₂ capital and operating costs not show-stoppers, desirable to minimize operational effort/safety concerns, maximize reliability
 - ⇒ Why not minicool with water, liquid methane, solid lithium, or beryllium?

Mat'l	ΔE _min (MeV)	Length (cm)	%X ₀
LH ₂	50	175	20
LiH	50	38	35
Li	50	57	37
CH ₄	50	49	45
Be	50	17	48
H ₂ O	50	25	70

Comments:

- 1. Liquid methane slightly better than beryllium
- 2. Liquids should give easier power handling by circulation
- 3. Solids require liquid cooling


Minicooling material comparison

- \rightarrow Li costs \approx 5% in μ/p , Be \approx 10%
- BUT: could raise *B* field to compensate

Solid minicooling: Heat transfer guestimate

• Approximate as 2D problem with heat applied in small inner core:

$$\Delta T \approx P/(2\pi kL) \ln (r_o/r_i)$$

(Neglect T dependence of $k \Rightarrow$ overestimate ΔT)

$$k \approx 70 \text{ W/m} \cdot \text{K} \text{ (Li)}$$

 $200 \,\mathrm{W/m} \cdot \mathrm{K} \,\mathrm{(Be)}$

say
$$P/L \approx 55$$
 W/cm (conservative)
 $r_i/r_i \approx 5$ (conservative?)

$$\rightarrow \Delta T \approx 20 \text{ K (Li)}$$

 $\approx 7 \, \mathrm{K} \, \mathrm{(Be)}$

⇒ Water-cooling around perimeter should suffice

<u>Minicooling – Conclusions:</u>

- 1. LH₂ minicooling appears feasible and affordable
- 2. But hazardous and complicated
 - would increase operational difficulty & diminish facility reliability
- 3. Understanding multi-kW heat transfer in LH₂ requires more study
- 4. Should consider alternatives: Li, LiH, CH₄, Be

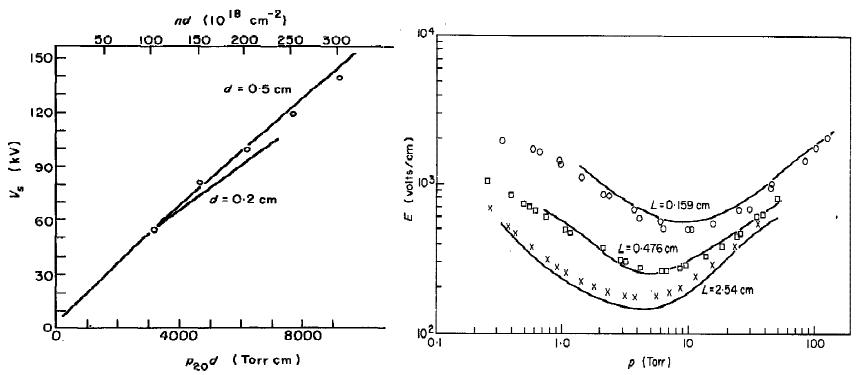
MCS in Strong Solenoidal Fields

- Clear that in sufficiently strong solenoidal field, Coulomb scattering will be suppressed:
 - Consider $\lim_{B\to\infty}$: all charged particles must travel along field lines
 - ⇒ MCS suppressed completely!
- Effect not modeled in Geant, nor in Moliere theory!
 - Moliere model assumes linear transport between scatters
- P. Lebrun: MUCOOL Note 30:
 - brute-force "mm-by-mm" Geant sim of Rutherford scatters

Emittances after 32 c (starting with penc		B=15T Radial distribs
Field	ϵ_{nC}	200
0.	27.7 ± 1.3	150 B=0
15 T., homogenous	11.8 ± 0.4	
15 T., AltSol	12.2 ± 0.4	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

• How big is effect for Double-Flip $(B_7 \le 7 \text{ T})$?

We don't know! (But, will improve e.g. Double-Flip w.r.t. SFOFO)


New idea: Gaseous absorber?

([L. Lederman,] R. Johnson, & DMK, IIT – MUCOOL Note 195)

- LH₂ absorbers mechanically complicated, scattering in windows limits cooling performance
 - \Rightarrow Why not high-pressure, gaseous-H₂ absorber?
 - Could improve cooling performance by
 - 1. Less scattering
 - 2. Shorter lattice \rightarrow less μ decay
 - 3. More-adiabatic µ energy loss/gain processes
- Problem 1: don't want material at high-β points of lattice
 - BUT: long-solenoid lattices have ≈ constant β!
- Problem 2: avoiding windows means gas inside RF cavities
 - \rightarrow HV breakdown?
 - BUT...

Gaseous absorber? (2)

• High-pressure H₂ gas is established way to suppress HV breakdown:

Breakdown voltages in hydrogen (Müller, 1966. permission of Springer-Verlag)

Figure 8.13. Theory and experiment compared for hydrogen at 2.8 GH₂ (MacDonald and Brown, 1949. Reproduced by permission of The America Physical Society)

---- Müller (1966) O Félici and Marchal (1948)

- Paschen's Law: $V_s = 0.448 (nd) + 0.6 (nd)^{1/2}$ (need to confirm in our regime)
 - \Rightarrow breakdown suppressed for $P \gtrsim \begin{cases} 40 \text{ atm (room temp.)} \\ 10 \text{ atm (LN}_2 \text{ temp.)} \end{cases}$
- \rightarrow To match absorption to RF gradient, need $P \approx 23$ atm at LN₂ temp.
 - \Rightarrow Could raise gradient as well, possibly \times 2 (power limited)

Gaseous absorber? (3)

- Problem 3: need thick windows at two ends
 - BUT: preliminary estimate says effect small:

1.6-mm Al exit window
$$\rightarrow \Delta \varepsilon_n \approx \beta_{\perp} \frac{(14 \,\mathrm{MeV})^2 t}{2\beta^2 p_{\mu} m_{\mu} L_R} \ll 1\%$$

- while $GH_2 \rightarrow \varepsilon \downarrow 15\%$, $\mu/p \uparrow 10\%$ (V. Balbekov)
- Possible side benefit: gas-cooled cavities more efficient
 - $\times \frac{1}{2}$ in power at LN₂ temp?
- → Conclude: more work needed, but looks interesting so far

Gaseous absorber? (4)

- Questions GH₂ R&D program should address (R. Johnson):
 - > Are the published breakdown voltages correct? Do expected operating conditions affect breakdown (ionizing radiation, RF frequency, external *B* field, surface materials, Be windows)?
 - > Can ion/electron-absorbing dopants improve breakdown behavior?
 - > Do we know how to build windows to work in these conditions (both vacuum and RF transition)?
 - > Are dark currents suppressed with GH₂?
 - > Does GH₂ have unexpected RF-power absorbing characteristics?
 - > Can the cavities be operated at lower *T* to reduce RF power (or to increase gradient at same power)?
 - > What is the optimum temperature, considering engineering, RF efficiency, windows, and gradient?
 - > Is there a cryogenic solution for efficient integration of cold RF, cold gas, and SC solenoids?
 - > If the cold RF doesn't work, is there a way to use a cylindrical ceramic insert?
- We expect GH₂ to work, but need actual tests to allay these concerns
 - aim: identify 1st-stage R&D program soon, commence tests in FY02

Shaped LiH absorbers?

- Fabrication of LiH shapes assumed feasible (for *e.g.* emittance-exchange wedge absorbers)
 - Can exist in principle
 - Believed to exist for bombs (LiD)
 - "Helge Ravn has a piece in his office"
- Power handling (rough overguestimate as for solid minicooling):

```
\Delta T \approx P/(2\pi kL) \ln(r_o/r_i), \quad k \approx 6.49 \text{ W/m·K}, \text{ say } P/L \approx 50 \text{ W/cm and } r_o/r_i \approx 5
```

- $\rightarrow \Delta T \approx 200 \text{ K vs. m.p.} = 680^{\circ}\text{C}$
- \Rightarrow looks OK
- Fabrication technology dangerous
 - reacts with H₂O, releasing hydrogen and igniting
 - ⇒ need to form in inert atmosphere, cool with kerosene or freon or what?
- Available commercially as powder or small chunks
 - → I have found no vendor willing to manufacture large shapes
 - please let me know if you know of any!

Summary:

- 1. No show-stoppers
- 2. Some interesting technology being developed
- 3. LH₂ absorber R&D could be completed within 2 years
- 4. Minicooling probably better done above LH₂ temperature
- 5. GH₂ may offer improved cooling performance (or same performance at less cost)

Open questions:

- 1. How to model improvement in cooling with absorber at high B_z ?
- 2. Still looking for LiH!